
m2/sec; T, specimen temperature, K; R, specimen radius, m; b, radius of the heat flux on the exposure surface, m; qo, heat 
flux density amplitude, W/m2; ~, modulation frequency of the heat flux, rad/sec. 
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Problems of compaction of a layer of deposited particles and its influence on the thermophysical parameters 
oft  he layer are considered. 

Most technological processes, performed with disperse systems, are accompanied by deposition of the solid phase on 
the heat-and-mass-exchange surface, which substantially affects the coefficients of heat, mass, and momentum transfer [1, 2]. 
Deposition of particles of various kinds on the surface is determined by many factors, among which it is important to 
distinguiSh hydrodynamic and thermodynamic conditions, theological properties of the disperse system, adhesive compatibili- 
ty of particles with the surface in flow, physicochemical transformations in the boundary layer, etc. At the same time the 
layer formed by particle deposition is subject to deformation and compaction under the action of external deforming stresses, 
which substantially affects the heat transfer through a two-layer wall and the thermophysical properties of the deposited layer 
proper. The mechanism of compacting the layer of disperse particles may be classified in the following manner: a) the 
dislocation mechanism, whose essence consists of redislocation of particles in elastobound systems under the action of 
external loads; b) mechanical compaction due to the action of external deforming stresses and mass forces [3]; c) compaction 

by diffusion of small particles under the action of diffusion thermophoresis [4]; d) the capillary mechanism of compaction in 
the presence of phase transformations (melting, dissolution, etc.) [4]. 

One-dimensional compaction of particles in the layer under the action of the external deforming stresses a D may be 
represented by the equation of porosity variation in the form [3] 

d__O_O = _ (1 - -  O) ~17' an. (1) 
dt 

Expressing the bulk viscosity ~s in terms of the shear one and changing from the substantional derivative to the local 
ones, we obtain 

00 3 
0---/-- -k V~ grad 0 = - -  I Orl~ -~ an, 

4 (2) 
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where V s is the velocity vector of particles in the layer, which, as a first approximation, may be assumed equal to the rate of 
squeezing a liquid out of pores as a result of compaction. 

We will consider a simplified hydrodynamic problem of squeezing the liquid out of a hypothetical cylindrical pore of 

radius Rp and length x = 6 by compaction of the layer. The equations of continuity and distribution of velocity of the liquid 
phase for U r < < U x, 0U x/0x < < 0Ux/0r and in the quasistationary approximation have the form 

_ 6U= v 0 {r OU~ ) =  1 O P .  I 0 (rUr)-~ = 0 ,  
(3) 

where U r and U x are the radial and axial components of the liquid velocity in the pore. With allowance made for the 
hydrodynamic slip on the macropore surface for the Knudsen numbers within 0.01 _< Kn < 0.1, the boundary conditions 

will be represented in the form 

r = Rp., U, --U~, Ux kh s OUx'[ 
Or I=% 

OP 
x = O, U~, = U~ = O, ='0; 

Ox 

x = 6 ,  P=Po,  

(4) 

where  Ug is the velocity of movement of the pore wall under the external load. Omitting the simplest transformations, we 
will present the solution (3) with the conditions (4) in the form 

Ux = 4U.x R~--r' q- 2khsRp 
(5) 

where x is the statistical mean pore length, related to the thickness of the particle layer. Averaging the velocity U x over the 

pore cross section, we obtain 

Rp 

2 J" U~rdr 
U~ = o = __Uex (6) 

R~, R v 

Thus, as follows from (6), the rate of squeezing the liquid out of the pores increases as the external load increases 

and the pore radius decreases. In the general case the value for velocity of longitudinal travel of particles across the layer 

thickness depends on many factors and is described by the equation [5] 

av~ 3ere 1 ---~ 
Oq . 41 h pro-1 (7) 

where q is the current mass in Lagrangian coordinates 

q(x, l )= j"9(x, t) d x = .  ( l - - O)  dx; 
0 0 

m is the index in the relations for viscosity; ~ is the density of the material with respect to the density of the incompressible 

base. 
Assuming that at q = 0 ,  x = 3 ,  U s ( 0 )  = -  U d and setting m = 2 ,  f r o m  (7 )  we will obtain 

Vs = U~ -- 3~------A-d { @ (x) dx. (7a) 
4Th 0 J 

Substituting the given expression into (2), for one-dimensional compaction we write 
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Fig. 1. Variation of the thermal conductiv- 
ity coefficient of a particle layer: 1) formu- 
la (10); 2) (11). 

x 00 + Ua. - - -  
Ot 4~ ,  Ox 4 , 

On introduction of the new function ~, = I O(x)dx, integrodifferential equation (8) is modified to the form 

.Ua 3 ) c)29 3 - l  09 0~9 + --" TI~ -~ ~a9 ~ = - -  rl, an' 
OtOx T Ox ~ 4 dx 

(8) 

The given quasilinear hyperbolic equation characterizes a variation of the layer porosity in thickness and in time as 
a result of its compaction. If we are to assume that the layer thickness is small, characteristic of the processes of particle 
deposition, then the weight of the upper layers of particles may be ignored. Then it can be assumed that V s --~ Ud, and we 
will present the equation of compaction in the form 

O___O + u d  O0 = 3._.3_Orl?taa; 
Ot Ox 4 

0 (x, t)lt=o = 0o; IO (x, t)l < oo. 

We will represent the solution of the given equation as 

3 -I 1 0 = Oo exp - -  - -~ -  ~ cra (t - -  x /Ud)  �9 (9) 

It is common knowledge that the coefficients of mass and heat transfer substantially depend on porosity. There are 
many formulas for calculating the effective thermal conductivity coefficient of a monodisperse layer of particles Xe, among 
which it is pertinent to note the dependence [6] 

~e = 3n~'B In 0,43 +.0.310 , (10) 
O --0.26 

which is adequate up to the organization of a dense ordered structure of identical spherical particles (@ = 0.26). As Fig. 1 
shows, Eq. (10) more adequately describes the experimental data [7] than the equation [6] 

~'e =(1--20 I--E~/X~ )/(I +O 1--Lr/X"-). (11) 

Using (9), we will represent Eq. (10) as 
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Z--2e = 3n In 0,43 + 0,310o exp ( - -  K ( t - -  x/Ua)l 
;~. Oo exp ( - -  K (t ~ x/Ud)) - -  0,26 ' (12) 

where K = (3/4)~-lsad . 
Equation (12) makes it possible to determine the distribution of the effective thermal conductivity coefficient in time 

and across the thickness of the layer in its compaction. 

If we are to deal with the mean porosity over the layer thickness, then from (9) we obtain 

(_  3__L O Oo exp ~ 4 ~]-Zlcrat), " 

Since with small dimensions of pores the shear viscosity attains large values, r/s- I < .< 1. Then we have 

~ e  

LB 

O = Oo (1 - -  0.75"qVla,~t); 

0.43 + 0.310o (1 - -  0.75r ~ o,d) 
- -  3 #  In 

Oo (1 --~ 0.75~-I(rat) - -  0,26 

Thus, as the particle layer is compacted, from (10) and (11) it can be assumed that the thermal conductivity coeffi- 
cient grows and in the limiting case is closer to the value of thermal conductivity of the particles. We will determine the 
density of the deposited layer of particles in the form 

p (X, t) = Pm(1 - -  O) = Pm [1 - -  O 0 exp (--  K (t - -  x/Ud))], 

whence it follows that in the hypothetical case t --, ~ ,  we have lim p(x, t) -,  Pro' 

In conclusion we will point out that with large thicknesses of the layer of particles a substantial role in their compac- 
tion can be played by mass forces caused by the weight of the upper layers. Besides, in compaction of polydisperse particles, 
their dimensions or fluctuations of distribution in particle dimensions and the problems of their aggregative stability defined 
by the formation of coagulative structures will be of importance. 

NOTATION 

khs , coefficient of hydraulic slip; P, pressure; Rp, pore radius; U, velocity of liquid in pores; x, coordinate; t, 
deposited layer thickness; O, porosity; ~Ts, bulk viscosity; ~, viscosity of liquid in pores; Pm, density of material of particles; 
kB, thermal conductivity coefficient of particles. 
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